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Abstract

We propose a technique for defeating signature-based malware detectors by ex-
ploiting information disclosed by antivirus interfaces. This information is lever-
aged to reverse engineer relevant details of the detector’s underlying signature
database, revealing binary obfuscations that suffice to conceal malware from the
detector. Experiments with real malware and antivirus interfaces on Windows
operating systems justifies the effectiveness of our approach.
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1. Introduction

Traditional signature-based malware detectors identify malware by scanning
untrusted binaries for distinguishing byte sequences or features. Features unique
to malware are maintained in a signature database, which must be continually
updated as new malware is discovered and analyzed.

Signature-based malware detection generally enforces a static approximation
of some desired dynamic (i.e., behavioral) security policy. For example, access
control policies, such as those that prohibit code injections into operating system
executables, are statically undecidable and can therefore only be approximated
by any purely static decision procedure such as signature-matching. A signature-
based malware-detector approximates these policies by identifying syntactic fea-
tures that tend to appear only in binaries that exhibit policy-violating behavior
when executed. This approximation is both unsound and incomplete in that
it is susceptible to both false positive and false negative classifications of some
binaries. For this reason signature databases are typically kept confidential,
since they contain information that an attacker could use to craft malware that
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the detector would misclassify as benign, defeating the protection system. The
effectiveness of signature-based malware detection thus depends on both the
comprehensiveness and confidentiality of the signature database.

Traditionally, signature databases have been manually derived, updated,
and disseminated by human experts as new malware appears and is analyzed.
However, the escalating rate of new malware appearances and the advent of
self-mutating, polymorphic malware over the past decade have made manual
signature updating less practical. This has led to the development of automated
data mining techniques for malware detection (e.g., [1, 2, 3]) that are capable
of automatically inferring signatures for previously unseen malware.

In this article we show how these data mining techniques can also be ap-
plied by an attacker to discover ways to obfuscate malicious binaries so that
they will be misclassified as benign by the detector. Our approach hinges on
the observation that although malware detectors keep their signature databases
confidential, all malware detectors reveal one bit of signature information every
time they reveal a classification decision. This information can be harvested
particularly efficiently when it is disclosed through a public interface. The clas-
sification decisions can then be delivered as input to a data mining malware
detection algorithm to infer a model of the confidential signature database.
From the inferred model we derive feature-removal and feature-insertion obfus-
cations that preserve the behavior of a given malware binary but cause it to be
misclassified as benign. The result is an obfuscation strategy that can defeat
any purely static signature-based malware detector.

We demonstrate the effectiveness of this strategy by successfully obfuscating
several real malware samples to defeat malware detectors on Windows operat-
ing systems. Windows-based antivirus products typically support Microsoft’s
I0fficeAntivirus interface [4], which allows applications to invoke any in-
stalled antivirus product on a given binary and respond to the classification
decision. Our experiments exploit this interface to obtain confidential signature
database information from several commercial antivirus products.

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 provides an overview of our approach, Section 4 describes a
data mining-based malware detection model, and Section 5 discusses methods
of deriving binary obfuscations from a detection model. Section 6 then de-
scribes experiments and evaluation of our technique. Section 7 concludes with
discussion and suggestions for future work.

2. Related work

Both the creation and the detection of malware that self-modifies to defeat
signature-based detectors are well-studied problems in the literature (c.f. [5,
6]). Self-modifying malware has existed at least since the early 1990’s and has
subsequently become a major obstacle for modern malware protection systems.
For example, Kaspersky Labs reported three new major threats in February
2009 that use self-modifying propagation mechanisms to defeat existing malware
detection products [7]. Propagation and mutation rates for such malware can



be very high. At the height of the Feebs virus outbreak in 2007, Commtouch
Research Labs reported that the malware was producing over 11,000 unique
variants of itself per day [8].

Most self-modifying malware uses encryption or packing as the primary ba-
sis for its modifications. The majority of the binary code in such polymorphic
malware exists as an encrypted or packed payload, which is unencrypted or un-
packed at runtime and executed. Signature-based protection systems typically
detect polymorphic malware by identifying distinguishing features in the small
unencrypted code stub that decrypts the payload (e.g., [9]). More recently,
metamorphic malware has appeared, which randomly applies binary transfor-
mations to its code segment during propagation in order to obfuscate features
in the unencrypted portion. An example is the MetaPHOR system (c.f., [10]),
which has become the basis for many other metamorphic malware propaga-
tion systems. Reversing these obfuscations to obtain reliable feature sets for
signature-based detection is the subject of much current research [9, 11, 12],
but case studies have shown that current antivirus detection schemes remain
vulnerable to simple obfuscation attacks until the detector’s signature database
is updated to respond to the threat [13].

To our knowledge, all existing self-modifying malware mutates randomly.
Our work therefore differs from past approaches in that it proposes an algo-
rithm for choosing obfuscations that target and defeat specific malware defenses.
These obfuscations could be inferred and applied fully automatically in the wild,
thereby responding to a signature update without requiring re-propagation by
the attacker. We argue that simple signature updates are therefore inadequate
to defend against such an attack.

Our proposed approach uses technology based on data mining-based malware
detectors. Data mining-based approaches analyze the content of an executable
and classify it as malware if a certain combination of features are found (or
not found) in the executable. These malware detectors are first trained so that
they can generalize the distinction between malicious and benign executables,
and thus detect future instances of malware. The training process involves
feature extraction and model building using these features. Data mining-based
malware detectors differ mainly on how the features are extracted and which
machine learning technique is used to build the model. The performance of these
techniques largely depends on the quality of the features that are extracted.

Schultz et al. [2] extract DLL call information (using GNU binutils) and
character strings (using GNU strings) from the headers of Windows PE ex-
ecutables, as well as 2-byte sequences from the executable content. The DLL
calls, strings, and bytes are used as features to train models. Models are trained
using two different machine learning techniques—RIPPER [14] and Naive Bayes
(NB) [15]—to compare their relative performances. Kolter et al. [1] extract bi-
nary n-gram features from executables and apply them to different classification
methods, such as k-nearest neighbor (KNN) [16], NB, Support Vector Machines
(SVM) [17], decision trees [18], and boosting [19]. Boosting is applied in combi-
nation with various other learning algorithms to obtain improved models (e.g.,
boosted decision trees).
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Figure 1: Binary Obfuscation Architecture

Our previous work on data mining based malware detection [3] extracts
binary n-grams from the executable, assembly instruction sequences from the
disassembled executables, and DLL call information from the program head-
ers. The classification models used in this work are SVM, decision tree, NB,
boosted decision tree, and boosted NB. In the following sections we show how
this technology can also be applied by an attacker to infer and implement effec-
tive attacks against malware detectors using information divulged by antivirus
interfaces.

3. Overview

The architecture of our binary obfuscation methodology is illustrated in
Figure 1. We begin by submitting a diverse collection of malicious and benign
binaries to the victim signature database via the signature query interface. The
interface reveals a classification decision for each query. For our experiments we
used the I0fficeAntivirus COM interface that is provided by Microsoft Win-
dows operating systems (Windows 95 and later) [4]. The Scan method exported
by this interface takes a filename as input and causes the operating system to
use the installed antivirus product to scan the file for malware infections. Once
the scan is complete, the method returns a success code indicating whether the
file was classified as malicious or benign. This allows applications to request
virus scans and respond to the resulting classification decisions.

We then use the original inputs and resulting classification decisions as a
training set for an inference engine. The inference engine learns an approximat-
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Figure 2: A data mining-based malware detection framework

ing model for the signature database using the training set. In our implemen-
tation, this model was expressed as a decision tree in which each node tests for
the presence or absence of a specific binary n-gram feature that was inferred to
be security-relevant by the data mining algorithm.

This inferred model is then reinterpreted as a recipe for obfuscating malware
so as to defeat the model. That is, each path in the decision tree encodes a set
of binary features that, when added or removed from a given malware sample,
causes the resulting binary to be classified as malicious or benign by the model.
The obfuscation problem is thus reduced to finding a binary transformation
that, when applied to malware, causes it to match one of the benignly-classified
feature sets. In addition, the transformation must not significantly alter the
behavior of the malware binary being obfuscated. Currently we identify suit-
able feature sets by manual inspection, but we believe that future work could
automate this process.

Once such a feature set is identified and applied to the malware sample, the
resulting obfuscated sample is submitted as a query to the original signature
database. A malicious classification indicates that the inferred signature model
was not an adequate approximation for the signature database. In this case the
obfuscated malware is added to the training set and training continues, resulting
in an improved model, whereupon the process repeats. A benign classification
indicates a successful attack upon the malware detector. In our experiments we
found that repeating the inference process was not necessary; our obfuscations
produced misclassified binaries after one round of inference.

4. A data mining based malware detection model

A data mining-based malware detector first trains itself with known in-
stances of malicious and benign executables. Once trained, it can predict the



proper classifications of previously unseen executables by testing them against
the model. The high-level framework of such a system is illustrated in Figure 2.

The predictive accuracy of the model depends on the given training data and
the learning algorithm (e.g., support vector machine, decision tree, naive bayes,
etc.) Several data mining-based malware detectors have been proposed in the
past [1, 2, 3]. The main advantage of these models over the traditional signature-
based models is that data mining-based models are more robust to changes in
the malware. Signature-based models fail when new malware appears with an
unknown signature. On the other hand, data mining-based models generalize
the classification process by learning a suitable malware model dynamically
over time. Thus, they are capable of detecting malware instances that were not
known at the time of training. This makes it more challenging for an attacker
to defeat a malware detector based on data mining.

Our previous work on data mining-based malware detection [3] has developed
an approach that consists of three main steps:

1. feature extraction, feature selection, and feature-vector computation from
the training data,

2. training a classification model using the computed feature-vector, and

3. testing executables with the trained model.

These steps are detailed throughout the remainder of the section.

4.1. Feature extraction

In past work we have extracted three different kinds of features from training
instances (i.e., executable binaries):

1. Binary n-gram features: In order to extract these features, we consider
each executable as a string of bytes and extract all possible n-grams from
the executables, where n ranges from 1 to 10.

2. Assembly n-gram features: We also disassemble each executable to ob-
tain an assembly language program. We then extract n-grams of assembly
instructions.

3. Dynamic link library (DLL) call features: Library calls are partic-
ularly relevant for distinguishing malicious binaries from benign binaries.
We extract the library calls from the disassembly and use them as features.

When deriving obfuscations to defeat existing malware detectors we found
that restricting our attention only to binary n-gram features sufficed for our
experiments reported in Section 6. However, in future work we intend to apply
all three feature sets to produce more robust obfuscation algorithms. Next, we
describe how these binary features are extracted.

Binary n-gram feature extraction. First, we apply the UNIX hexdump utility to
convert the binary executable files into textual hexdump files, which contain the
hexadecimal numbers corresponding to each byte of the binary. This process is
performed to ensure safe and easy portability of the binary executables. The



feature extraction process consists of two phases: (1) feature collection, and (2)
feature selection.

The feature collection process proceeds as follows. Let the set of hexdump
training files be H = {hq, ..., hp}. We first initialize a set L of n-grams to empty.
Then we scan each hexdump file h; by sliding an n-byte window over its binary
content. Each recovered n-byte sequence is added to L as an n-gram. For each
n-gram g € L we count the total number of positive instances p, (i.e., malicious
executables) and negative instances ny (i.e., benign executables) that contain g.

There are several implementation issues related to this basic approach. First,
the total number of n-grams may be very large. For example, the total number
of 10-grams in our dataset is 200 million. It may not possible to store all of
them in computer’s main memory. Presently we solve this problem by storing
the n-grams in a large disk file that is processed via random access. Second, if
L is not sorted, then a linear search is required for each scanned n-gram to test
whether it is already in L. If N is the total number of n-grams in the dataset,
then the time for collecting all the n-grams would be O(N?), an impractical
amount of time when N = 200 million. In order to solve the second problem,
we use an Adelson-Velsky-Landis (AVL) tree [20] to index the n-grams. An
AVL tree is a height-balanced binary search tree. This tree has a property that
the absolute difference between the heights of the left sub-tree and the right
sub-tree of any node is at most one. If this property is violated during insertion
or deletion, a balancing operation is performed, and the tree regains its height-
balanced property. It is guaranteed that insertions and deletions are performed
in logarithmic time. Inserting an m-gram into the database thus requires only
O(log,(N)) searches. This reduces the total running time to O(N log,(N)),
making the overall running time about 5 million times faster when N as large
as 200 million. Our feature collection algorithm implements these two solutions.

Feature selection. If the total number of extracted features is very large, it may
not possible to use all of them for training. Aside from memory limitations
and impractical computing times, a classifier may become confused with a large
number of features because most of them would be noisy, redundant, or irrele-
vant. It is therefore important to choose a small, relevant and useful subset of
features for more efficient and accurate classification. We choose information
gain (IG) as the selection criterion because it is recognized in the literature as
one of the best criteria isolating relevant features from large feature sets. IG can
be defined as a measure of effectiveness of an attribute (i.e., feature) in classify-
ing a training data [21]. If we split the training data based on the values of this
attribute, then IG gives the measurement of the expected reduction in entropy
after the split. The more an attribute can reduce entropy in the training data,
the better the attribute is for classifying the data.

The next problem is to select the best S features (i.e., n-grams) according
to IG. One nalve approach is to sort the m-grams in non-increasing order of
IG and select the top S of them, which requires O(N log, N) time and O(N)
main memory. But this selection can be more efficiently accomplished using a
heap that requires O(N log, S) time and O(S) main memory. For S = 500 and



N = 200 million, this approach is more than 3 times faster and requires 400,000
times less main memory. A heap is a balanced binary tree with the property
that the root of any sub-tree contains the minimum (maximum) element in
that sub-tree. First we build a min-heap of size S. The min-heap contains the
minimum-IG n-gram at its root. Then each n-gram g is compared with the
n-gram at the root r. If IG(g) < IG(r) then we discard g. Otherwise, r is
replaced with g, and the heap is restored.

Feature vector computation. Suppose the set of features selected in the above
step is F = {f1,..., fs}. For each hexdump file h;, we build a binary feature
vector h;(F) = {hi(f1),....,hi(fs)}, where h;(f;) = 1 if h; contains feature f;,
or 0 otherwise. The training algorithm of a classifier is supplied with a tuple
(hi(F),l(h;)) for each training instance h;, where h;(F) is the feature vector
and I(h;) is the class label of the instance h; (i.e., positive or negative).

4.2. Training

We apply SVM, Naive Bayes (NB), and decision tree (J48) classifiers for the
classification task. SVM can perform either linear or non-linear classification.
The linear classifier proposed by Vapnik [17] creates a hyperplane that separates
the data points into two classes with the maximum margin. A maximum-margin
hyperplane is the one that splits the training examples into two subsets such that
the distance between the hyperplane and its closest data point(s) is maximized.
A non-linear SVM [22] is implemented by applying a kernel trick to maximum-
margin hyperplanes. This kernel trick transforms the feature space into a higher
dimensional space where the maximum-margin hyperplane is found, through the
aid of a kernel function.

A decision tree contains attribute tests at each internal node and a decision
at each leaf node. It classifies an instance by performing the attribute tests
prescribed by a path from the root to a decision node. Decision trees are rule-
based classifiers, allowing us to obtain human-readable classification rules from
the tree. J48 is the implementation of the C4.5 Decision Tree algorithm. C4.5
is an extension of the ID3 algorithm invented by Quinlan [18]. In order to train
a classifier, we provide the feature vectors along with the class labels of each
training instance that we have computed in the previous step.

4.3. Testing

Once a classification model is trained, we can assess its accuracy by compar-
ing its classification of new instances (i.e., executables) to the original victim
malware detector’s classifications of the same new instances. In order to test
an executable h, we first compute the feature vector h(F) corresponding to the
executable in the manner described above. When this feature vector is provided
to the classification model, the model outputs (predicts) a class label I(h) for
the instance. If we know the true class label of h, then we can compare the
prediction with the true label, and check the correctness of the learned model.
If the model’s performance is inadequate, the new instances are added to the
training set resulting in an improved model, and testing resumes.



Figure 3: An example of a decision tree-based malware detection model

In the next section, we describe how the model yielded by the above process
can be used to derive binary obfuscations that defeat the model.

5. Model-reversing Obfuscations

Malware detectors based on static data-mining attempt to learn correlations
between the syntax of untrusted binaries and the (malicious or benign) behavior
that those binaries exhibit when executed. This learning process is necessarily
unsound or incomplete because most practically useful definitions of “malicious
behavior” are Turing-undecidable. Thus, every purely static algorithm for mal-
ware detection is vulnerable to false positives, false negatives, or both. Our
obfuscator exploits this weakness by discovering false negatives in the model
inferred by a static malware detector.

The decision tree model inferred in the previous section can be used as a basis
for deriving binary obfuscations that defeat the model. The obfuscation involves
adding or removing features (i.e., binary n-grams) to and from the malware
binary so that the model classifies the resulting binary as benign. These binary
transformations must be carefully crafted so as to avoid altering the runtime
behavior of the malware program lest they result in a policy-adherent or non-
executable binary.

A simple example will illustrate. Figure 3 shows a simple decision tree model
for malware detection. Each internal node in the tree denotes a feature test.
For example, the root has feature test f1. A test instance x (i.e., executable) is
first tested against the root. If x has feature f;, then the detector follows the
left branch (True); otherwise it follows the right branch (False). This process
continues until the detector arrives at a leaf node. Leaf nodes denote classifi-
cation decisions, expressed as a minus sign (benign) or plus sign (malicious).
For example, instances that cause the detector to arrive in leaf node L; will be
classified as benign.

According to the model in Figure 3, malware having features f; and fo will
be classified as benign. Likewise, malware lacking both f; and f; will also be



classified as benign. Thus, an obfuscation that inserts features f; and f; into a
binary, or removes both f; and f4 from the binary, without altering the runtime
behavior of the binary, suffices to conceal malware from the detector.

5.1. Path Selection

We begin the obfuscation process by searching for a candidate path through
the decision tree that ends in a benign leaf node. Our goal will be to add and
remove features from the malicious executable x so as to cause the detector to
follow the chosen decision tree path during classification. Since the path ends in
a benign-classifying decision node, this will cause the malware to be misclassified
as benign by the detector.

Each path from the root to a leaf node in a decision tree can be thought of
as a classification rule composed of the conjunction of the conditions encoded
by each node in the path. For example, in Figure 3 the path from the root to
leaf node Lo encodes the following rule (Rz):

Ry : f1 A= fa N\ f3 = benign

which says that if a test instance has feature f; and does not have feature fs,
and has feature f3, then the instance is benign. Here the negated term —fy
indicates that this pattern must not be present in the test instance.

While we believe that it is possible in theory to obfuscate any executable
binary to satisfy any given rule at classification-time, some rules are significantly
easier to realize than others for any given binary. In general, feature removal
tends to be more difficult to implement than feature addition. Thus, to minimize
the number of feature additions, for each benign-classifying rule in the decision
tree we count the number of negated conjunct terms corresponding to features
that are present in x. The path with the fewest such terms is likely to be easiest
to implement and is therefore chosen as the candidate rule.

Once a candidate rule R is selected, we evaluate each conjunct term of R
against binary x. Each such test may either succeed or fail for . Negated feature
tests = f may fail because feature f is present in x, and non-negated feature tests
f may fail because feature f is not present in x. Let F,. be the set of features
f such that —f is a term in rule R and test —f fails for z, and let F, be the
set of features f such that f is a term in rule R and test f fails for z. Adding
all features in F, to x and removing all features in F, from x would cause
the resulting binary to satisfy rule R. If these feature-additions and feature-
removals can be implemented without changing the runtime behavior of x, then
these transformations suffice to successfully obfuscate x so that its malicious
behavior is not detected. In the following sections we discuss strategies for
implementing feature-removals and feature-additions to successfully obfuscate
2 in this way.

5.2. Feature Insertion

Inserting new features into executable binaries without significantly altering
their runtime behavior tends to be a fairly straightforward task. We discuss

10



several strategies for adding features to x86 Portable Executable (PE) binary
files. While the discussion is specific to PE files, we believe these strategies can
also be extended to other binary formats.

The x86 PE binary format is composed of sections of binary data. The
starting file offset of each section is linked from a header at the beginning of
the file, or from fields within other sections reachable via the header. PE files
can therefore be thought of as tree data structures rooted at the file header; the
system loader does not typically process them sequentially from beginning to
end. Bytes appearing outside of any section are therefore completely ignored
by the system loader.

Thus, one easily implementable strategy for transparently inserting a new
feature into a PE file is to simply append the feature bytes to the end of the file,
or to insert them between existing sections. These bytes will be ignored by the
system loader and will not be present in the process memory image when the
binary is loaded. They will therefore have no effect upon the runtime behavior
of the process.

In our tests reported in Section 6 we found that this simple feature-insertion
sufficed to defeat the detectors we tested. However, a more sophisticated detec-
tor might limit its feature-selection process to reachable PE sections in order
to defeat this attack. To counter this defense, we could have introduced the
features to existing sections in one of the following ways:

o Add the feature to a non-loaded section. Each section in a PE file includes
a flag that specifies whether the section is loaded into memory at runtime.
Non-loaded sections typically contain meta-data that is useful for tools
such as debuggers but that is not used during execution. Features can
therefore be safely added to new or existing non-loaded sections without
affecting the program’s runtime behavior.

o Append the feature to a dynamically-sized section. Some loaded sections,
such as the heap, grow at runtime. These sections have two different length
specifiers in PE files—one specifies the size of any statically initialized data
that is loaded from the PE file into the segment at process start, and the
other specifies the amount of memory to allocate (but not initialize) for
the entire section at load time.

Feature data can be safely added to these growable sections by appending
it to the statically initialized data for the section. This feature data will
be loaded into the section at process start but will be overwritten as
the section grows. It will only affect runtime behavior of programs that
read uninitialized heap memory before it is allocated. Since no standard
memory manager does this, this is a simple and safe way to add features
to loaded sections without changing the behavior of most programs.

e Insert the feature into the code segment as dead (i.e., unreachable) code.
This strategy involves inserting the feature bytes into unused portions of
the code segment, possibly by shifting existing code blocks to make room.
We discuss this technique in more detail below.

11



Dead code insertion is more difficult to implement than the other feature
insertion strategies, but has the advantage that it is provably undecidable for
any purely static detector to reliably isolate these features from the rest of the
code. Dead code identification is a well known undecidable problem for any
architecture that includes conditional or computed jumps. Thus, the feature
will not be safely discardable during feature selection, and will therefore be
included in the decision tree by any classifier that depends on a static analysis
for feature selection.

Dead code insertion cannot be computably implemented for arbitrary bina-
ries, but it can be implemented as long as a control-flow graph for the binary
code is known. This is a reasonable assumption if we assume that the attacker
has access to the malware source code. Most existing compilers for x86 archi-
tectures already insert small blocks of static data or padding between methods
using this information, and assemblers have directives for doing this as well.
Dead code can be safely inserted using either of these established techniques.

5.3. Feature Removal

Removal of a feature from an executable binary is more difficult to imple-
ment without changing the program’s runtime behavior. There are two major
techniques for doing this implemented by existing malware:

e encryption (polymorphic malware), and
e code mutation (metamorphic malware).

Polymorphic malware encrypts the majority of its code and data using a
random key. This payload is then decrypted at runtime and executed. The
payload can be re-encrypted using a different key during propagation, creating
many syntactically different but functionally identical variants.

Features found in the encrypted payload cyphertext of a polymorphic virus
or worm can typically be removed simply by choosing a different encryption
key. With a large enough key space and a sufficiently diverse collection of
cyphertexts, the probability of finding a cyphertext that includes none of the
disallowed features can be raised arbitrarily high. Non-polymorphic malware
can be made polymorphic by wrapping it in a polymorphic propagation system.

Thus, polymorphic malware propagation reduces the feature space available
to a detector to the two remaining file portions that cannot be encrypted: the
file meta-data, and the decryption kernel. File meta-data cannot be encrypted
because the system loader must be able to parse it in order for the binary
to be executable. The decryption kernel that decrypts the payload cannot be
encrypted without introducing a new decryption kernel, hence reintroducing the
issue.

Although PE meta-data cannot be safely encrypted, the meta-data of typ-
ical x86 PE files can easily be crafted to be identical to that of known benign
executables. A detector that does not reject important benign programs cannot,
therefore, reliably distinguish malicious instances from non-malicious instances

12



based on features found in this standard meta-data. Thus, we henceforth limit
our attention to removing features from the decryption kernel.

The decryption kernel of a polymorphic worm is a relatively small code
stub at or near the program entrypoint that decrypts the encrypted payload
and then branches to the newly decrypted code. Removing a feature from
the decryption kernel requires replacing it with a functionally equivalent byte
sequence. Metamorphic malware engines achieve this by randomly applying a
set of known code equivalence transformations to the decryption code to produce
syntactically different but functionally identical code. One of the simplest such
transformations is to randomly insert nop (no-operation) instructions between
various instructions, which will be ignored by the processor at runtime.

While nop-insertion is an effective feature-removal strategy for some mal-
ware detectors, more sophisticated detectors can defend against such an attack
by disregarding all nop instructions during feature selection.! To defeat such
a detector, we could have resorted to a more powerful metamorphic obfusca-
tor such as the MetaPHOR system (c.f., [10]). MetaPHOR disassembles x86
binary code to a simplified intermediate language in which common sequences
of instructions are expressed as single operations. It then re-assembles new x86
binary code from the intermediate representation pseudo-randomly. That is, for
any given intermediate code there exist many possible equivalent x86 instruc-
tion sequences, which are chosen randomly to create a syntactically different
but functionally equivalent instruction sequence.

While polymorphism and metamorphism are powerful existing techniques for
obfuscating malware against signature-based detectors, it should be noted that
existing polymorphic and metamorphic malware mutates randomly. Our attack
therefore differs from these existing approaches in that we choose obfuscations
that are derived directly from signature database information leaked by the
malware detector being attacked. Our work therefore builds upon this past
work by showing how antivirus interfaces can be exploited to choose an effective
obfuscation, which can then be implemented using these existing techniques.

6. Experiments

To test our approach, we conducted two sets of experiments. In the first
experiment we attempted to collect classification data from several commercial
antivirus products by querying their public interfaces automatically. In the sec-
ond experiment we obfuscated a malware sample in order to defeat the data
mining-based malware detector we developed in past work [3], and that is de-
scribed in Section 4. In future work we intend to combine these two results to
test fully automatic obfuscation attacks upon commercial antivirus products.

IReliably identifying nop instructions in arbitrary x86 binary code is not decidable in
general due to the non-aligned nature of the instruction set and the resulting instruction
sequence aliasing decision problems. However, a feature-selector based on m-grams could
simply disregard all 0x90 bytes (the nop op-code) to defeat nop-insertion at the expense of
losing a marginal amount of decision information.
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6.1. Dataset

We have two non-disjoint datasets. The first dataset (datasetl) contains a
collection of 1,435 executables, 597 of which are benign and 838 are malicious.
The second dataset (dataset2) contains 2,452 executables, having 1,370 benign
and 1,082 malicious executables. The distribution of datasetl is hence 41.6%
benign and 58.4% malicious, and that of dataset2 is 55.9% benign and 44.1% ma-
licious. This distribution was chosen intentionally to evaluate the performance
of the feature sets in different scenarios. We collect the benign executables from
different Windows XP, and Windows 2000 machines, and collect the malicious
executables from VX Heavens [23], which contains a large collection of malicious
executables. The benign executables contain various applications found in the
Windows system folder (e.g. C:\Windows), as well as other executables drawn
from the default program installation directory (e.g., C:\Program Files) of
various machines. Malicious executables contain viruses, worms, trojans, and
back-doors. We select only the Win32 Portable Executables (PE) in both the
cases. We would like to experiment with other executable formats (e.g., ELF)
in the future.

6.2. Interface Exploit Experiment

To test the feasibility of collecting confidential signature database informa-
tion via the antivirus interface on Windows operating systems, we wrote a small
utility that queries the I0fficeAntivirus [4] COM interface on Windows XP
and Vista machines. The utility uses this interface to request virus scans of in-
stances in datasetl. We tested our utility on four commercial antivirus products:
Norton Antivirus 2009, McAfee VirusScan Plus, AVG 8.0, and Avast Antivirus
20009.

In all but Avast Antivirus we found that we were able to reliably sample
the signature database using the interface. Our utility required no elevated
privileges to successfully harvest this data on Windows XP and Windows Vista
systems. Benign classifications had no observable effect (other than to solicit
the appropriate return code from the interface), while malicious classifications
had the side-effect of quarantining the executable named in the query. The
quarantining process typically involved GUI activity (e.g., a pop-up window
warning the user) and file activity (e.g., moving the file to a safe location),
which slowed down the detection process slightly. However, we found that this
activity did not prevent ongoing scan requests. On average we were able to
obtain classification decisions at a rate of 2 MB/sec (4.6 files per second) on
a 2Ghz Windows Vista desktop machine with a standard 5400 RPM SATA
harddrive. We therefore expect that a large amount of classification data could
be gathered in this way fairly easily on victim systems.

In the case of Avast Antivirus 2009 we found that the return code yielded
by the interface was not meaningful—it did not distinguish between different
classifications. Thus, Avast Antivirus 2009 was not vulnerable to our attack.
However, in Section 7 we discuss possible methods of circumventing this limita-
tion that could be implemented in future work.
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6.3. Model-driven Obfuscation Ezperiment

We next used the techniques described in Section 5 to obfuscate a malicious
executable so as to conceal it from a data mining-based malware detector [3]. To
train the classifier we used the two datasets described above. Each dataset has
different sizes and distributions of benign and malicious executables. We select
the classification-relevant binary n-gram features using the techniques explained
in Section 4. Then we build decision tree classifiers using the selected feature
sets. Our implementation is developed in Java with JDK 1.5. We use Weka ML
toolbox [24] for training the decision tree classifier (the C4.5 algorithm).

In order to evaluate our technique on malware obfuscation, we chose to ob-
fuscate the Win32. Navidad.a virus using our technique. Our malware detection
model M sucessfully classified this as malware. In order to defeat the model,
the malware was obfuscated via the following steps:

1. Generate the binary feature vector corresponding to the malware = using
our technique described in Section 4.3. Let the feature vector be F(z) =
{fi(z),..., fn(z)}, where f;(x) is either 0 or 1 depending on whether the
feature (i.e., n-gram) f; is absent or present in z.

2. Analyze the decision tree model M and identify a candidate rule R as
described in Section 5.1.

3. Identify the features that must be inserted or remove to satisfy R.

4. Insert and/or remove the necessary features to/from the malware using a
hexadecimal editor.

In the case of Win32. Navidad.a, we only needed to insert features in order to
successfully defeat the model. The resulting obfuscated binary was misclassified
by the detector as benign. We also verified through informal testing that the
obfuscated malware still had identical functionality to the original malware.

Although we performed this obfuscation manually, we believe it would be
fairly easy to fully automate this process. One obvious approach would be to
apply existing polymorphic and metamorphic malware obfuscation engines such
as MetaPHOR (c.f., [10]) to feature-containing portions of the malware using
a succession of randomly chosen cryptographic keys and seed values until the
unwanted features are removed. We intend to investigate such an approach in
future work.

7. Conclusion

In this paper we have outlined a technique whereby antivirus interfaces that
reveal classification decisions can be exploited to infer confidential information
about the underlying signature database. These classification decisions can be
used as training inputs to data mining-based malware detectors. Such detectors
will learn an approximating model for the signature database that can be used
as a basis for deriving binary obfuscations that defeat the signature database.
We conjecture that this technique could be used as the basis for effective, fully
automatic, and targeted attacks against signature-based antivirus products.
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Our experiments justify this conjecture by demonstrating that classification
decisions can be reliably harvested from several commercial antivirus products
on Windows operating systems by exploiting the Windows public antivirus in-
terface. We also demonstrated that effective obfuscations can be derived for real
malware from an inferred model by successfully obfuscating a real malware sam-
ple using our model-reversing obfuscation technique. The obfuscated malware
defeated the detector from which the model was derived.

Our signature database inference procedure was not an effective attack against
one commercial antivirus product we tested because that product did not fully
support the antivirus interface. In particular, it returned the same result code
irrespective of its classification decision for the submitted binary file. However,
we believe this limitation could be overcome by an attacker in at least two
different ways:

First, although the return code did not divulge classification decisions, the
product did display observably different responses to malicious binaries, such
as opening a quarantine pop-up window. These responses could have been
automatically detected by our query engine. Determining classification decisions
in this way is a slower but still fully automatic process.

Second, many commercial antivirus products also exist as freely distributed,
stand-alone utilities that scan for (but do not necessarily disinfect) malware
based on the same signature databases used in the retail product. These light-
weight scanners are typically implemented as Java applets or ActiveX controls
so that they are web-streamable and executable at low privilege levels. Such
applets could be executed in a restricted virtual machine environment to effec-
tively create a suitable query interface for the signature database. The execution
environment would provide a limited view of the filesystem to the victim applet
and would infer classification decisions by monitoring decision-specific system
calls, such as those that display windows and dialogue boxes.

From the work summarized in this article, we conclude that effectively con-
cealing antivirus signature database information from an attacker is important
but difficult. Current antivirus interfaces such as the one currently supported by
Windows operating systems invite signature information leaks and subsequent
obfuscation attacks. Antivirus products that fail to support these interfaces are
less vulnerable to these attacks, however they still divulge confidential signature
database information through covert channels, such as graphical responses and
other side-effects.

Fully protecting against these confidentiality violations might not be feasi-
ble; however there are some obvious steps that defenders can take to make these
attacks more computationally expensive for the attacker. One obvious step is to
avoid implementing or supporting interfaces that divulge classification decisions
explicitly and on-demand through return codes. While this prevents benign
applications from deteting and responding to malware quarantines, this reduc-
tion in functionality seems reasonable in the (hopefully uncommon) context of a
malware attack. Protecting against signature information leaks through covert
channels is a more challenging problem. Addressing it effectively might require
leveraging anti-piracy technologies that examine the current execution environ-
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ment and refuse to divulge classification decisions in restrictive environments
that might be controlled by an attacker. Without such protection, attackers
will continue to be able to craft effective, targeted binary obfuscations that
defeat existing signature-based malware detection models.
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